1 頁 (共 1 頁)

114 內壢高中

發表於 : 2025年 5月 5日, 12:48
thepiano
請參考附件

Re: 114 內壢高中

發表於 : 2025年 5月 5日, 15:08
thepiano
填充第 1 題
[x - √(x^2 - 2011)][y + √(y^2 - 2011)] = -2011
同乘 x + √(x^2 - 2011),整理可得
√(x^2 - 2011) + √(y^2 - 2011) = -x - y

同乘 y - √(x^2 - 2011),整理可得
√(x^2 - 2011) + √(y^2 - 2011) = x + y

√(x^2 - 2011) + √(y^2 - 2011) = 0
2x + y = x = ±√2011


計算第 3 題
323 = 17 * 19

15! ≡ 2 * 3 * 4 * 5 * 6 * 7 * 8 * (-8) * (-7) * (-6) * (-5) * (-4) * (-3) * (-2) (mod 17)
≡ -[(2 * 3 * 4 * 5) * (6 * 7 * 8)]^2 (mod 17)
≡ -(1 * 13)^2 (mod 17)
≡ -(-4)^2 (mod 17)
≡ 1 (mod 17)

15! ≡ 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * (-9) * (-8) * (-7) * (-6) * (-5) * (-4) (mod 19)
≡ (2 * 3) * [(4 * 5) * (6 * 9) * (7 * 8)]^2 (mod 19)
≡ 6 * [1 * (-3) * (-1)]^2 (mod 19)
≡ 16 (mod 19)

令 15! = 323a + 19b + 16
取 b = 1,19b + 16 = 35 ≡ 1 (mod 17)

故 15! ≡ 35 (mod 323)

Re: 114 內壢高中

發表於 : 2025年 5月 5日, 17:40
thepiano
填充第 7 題
考慮以下 6 種 (x,y,z) 就好
(3,1,1)、(1,3,1)、(1,1,3)
(2,2,1)、(2,1,2)、(1,2,2)

所求 = 3 * C(5,3) * C(2,1) * [(1/2)^3(1/3)(1/6) + (1/2)(1/3)^3(1/6) + (1/2)(1/3)(1/6)^3] + 4 * C(5,2) * C(3,2) * [(1/2)^2(1/3)^2(1/6) + (1/2)^2(1/3)(1/6)^2 + (1/2)(1/3)^2(1/6)^2] = 5/3