114 內壢高中
版主: thepiano
Re: 114 內壢高中
填充第 1 題
[x - √(x^2 - 2011)][y + √(y^2 - 2011)] = -2011
同乘 x + √(x^2 - 2011),整理可得
√(x^2 - 2011) + √(y^2 - 2011) = -x - y
同乘 y - √(x^2 - 2011),整理可得
√(x^2 - 2011) + √(y^2 - 2011) = x + y
√(x^2 - 2011) + √(y^2 - 2011) = 0
2x + y = x = ±√2011
計算第 3 題
323 = 17 * 19
15! ≡ 2 * 3 * 4 * 5 * 6 * 7 * 8 * (-8) * (-7) * (-6) * (-5) * (-4) * (-3) * (-2) (mod 17)
≡ -[(2 * 3 * 4 * 5) * (6 * 7 * 8)]^2 (mod 17)
≡ -(1 * 13)^2 (mod 17)
≡ -(-4)^2 (mod 17)
≡ 1 (mod 17)
15! ≡ 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * (-9) * (-8) * (-7) * (-6) * (-5) * (-4) (mod 19)
≡ (2 * 3) * [(4 * 5) * (6 * 9) * (7 * 8)]^2 (mod 19)
≡ 6 * [1 * (-3) * (-1)]^2 (mod 19)
≡ 16 (mod 19)
令 15! = 323a + 19b + 16
取 b = 1,19b + 16 = 35 ≡ 1 (mod 17)
故 15! ≡ 35 (mod 323)
[x - √(x^2 - 2011)][y + √(y^2 - 2011)] = -2011
同乘 x + √(x^2 - 2011),整理可得
√(x^2 - 2011) + √(y^2 - 2011) = -x - y
同乘 y - √(x^2 - 2011),整理可得
√(x^2 - 2011) + √(y^2 - 2011) = x + y
√(x^2 - 2011) + √(y^2 - 2011) = 0
2x + y = x = ±√2011
計算第 3 題
323 = 17 * 19
15! ≡ 2 * 3 * 4 * 5 * 6 * 7 * 8 * (-8) * (-7) * (-6) * (-5) * (-4) * (-3) * (-2) (mod 17)
≡ -[(2 * 3 * 4 * 5) * (6 * 7 * 8)]^2 (mod 17)
≡ -(1 * 13)^2 (mod 17)
≡ -(-4)^2 (mod 17)
≡ 1 (mod 17)
15! ≡ 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * (-9) * (-8) * (-7) * (-6) * (-5) * (-4) (mod 19)
≡ (2 * 3) * [(4 * 5) * (6 * 9) * (7 * 8)]^2 (mod 19)
≡ 6 * [1 * (-3) * (-1)]^2 (mod 19)
≡ 16 (mod 19)
令 15! = 323a + 19b + 16
取 b = 1,19b + 16 = 35 ≡ 1 (mod 17)
故 15! ≡ 35 (mod 323)
Re: 114 內壢高中
填充第 7 題
考慮以下 6 種 (x,y,z) 就好
(3,1,1)、(1,3,1)、(1,1,3)
(2,2,1)、(2,1,2)、(1,2,2)
所求 = 3 * C(5,3) * C(2,1) * [(1/2)^3(1/3)(1/6) + (1/2)(1/3)^3(1/6) + (1/2)(1/3)(1/6)^3] + 4 * C(5,2) * C(3,2) * [(1/2)^2(1/3)^2(1/6) + (1/2)^2(1/3)(1/6)^2 + (1/2)(1/3)^2(1/6)^2] = 5/3
考慮以下 6 種 (x,y,z) 就好
(3,1,1)、(1,3,1)、(1,1,3)
(2,2,1)、(2,1,2)、(1,2,2)
所求 = 3 * C(5,3) * C(2,1) * [(1/2)^3(1/3)(1/6) + (1/2)(1/3)^3(1/6) + (1/2)(1/3)(1/6)^3] + 4 * C(5,2) * C(3,2) * [(1/2)^2(1/3)^2(1/6) + (1/2)^2(1/3)(1/6)^2 + (1/2)(1/3)^2(1/6)^2] = 5/3