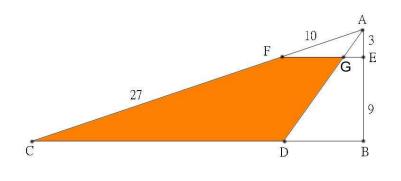
台南縣九十三學年度公立國民中學教師聯合甄選試卷 〈數學〉

說明:

- 一、請先核對答案卡上號碼與准考證號碼是否相同,考試 科目是否正確,若用錯答案卡作答則不予計分。
- 二、本試卷題本採雙面印刷,共五頁有80題選擇題,測驗時間從8:20到9:30共70分鐘。
- 三、請依照題意從四個選項中選出一個正確或最佳的答案,並用 2B 鉛筆在答案卡上相應的位置畫記,請務必將選項塗黑、塗滿。未依答案卡上注意事項劃記,以致光學閱讀機無法正確閱讀,其後果由應考人自行負責,不得提出異議。

第一部分:數學

- 1.某圓 C 內接一個三角形,若此三角形之某一邊之長為 12 公 尺,而且此邊之對應角為 30 度。假設此圓之直徑為 ab (ab 為一個二位數),則 a+b=?
 - (A)3
 - (B)4
 - (C)5
 - (D)6
- 2.若 ABCD 為一個長方形, $\overline{AB} = 6$ 公尺, $\overline{BC} = 4$ 公尺。延長


直線 BD 過 $D \propto E$, 使得 $\overline{BD} = \overline{DE}$, 求 \overline{AE} 之 $\overline{E} = ?$ 公尺

- (A)9
- (B)10
- (C)11
- (D)12
- 3. 擲 3 顆相同且公正之骰子,請問恰有 2 顆點數相同之機率為 多少?
 - $(A)\frac{5}{11}$
 - $(B)\frac{5}{12}$
 - $(C)\frac{4}{11}$
 - (D) $\frac{4}{12}$
- 4.如下圖, \overline{DA} 等分 $\angle BAC$, 且 $\angle ABC = 90$ 度。 $\overline{AF} = 10$,

 \overline{AE} = 3, \overline{EB} = 9, 且 \overline{FC} = 27。求陰影部分 CDGF 之面積大約

為多少?[請選出最接近之整數值]

- (A)146
- (B)147
- (C)148
- (D)149

5.今日最新氣象報告,敏多力颱風於本日下午2時的中心位置,在鵝鑾鼻燈塔的正南方300公里處,暴風半徑為250公里,以每小時25公里的速度朝「北30度西」等速直線前進。若此颱風之速度、方向及暴風半徑皆不變,求鵝鑾鼻燈塔在此暴風圈內前後共長達幾小時?

(A)12

(B)14

(C)16

(D)18

6.今有一長 15 公分,寬 8 公分的長方形紙板,於四角減去 4 個小正方形摺成無蓋的紙盒,若減去 a 公分時,可使其容積最大,則 a=?

(A)3

(B)6

 $(C)\frac{2}{3}$

(D) $\frac{5}{3}$

7.若球面 $T: x^2 + y^2 + z^2 + ax + by + cz + d = 0$ 與平面 x - 2y - 2z - 7 = 0 相切於點 A(3,-1,-1), 且通過 B(1,-3,1), 求 a+b+c+d=?

(A) - 45

(B) -48

(C) -51

(D) -54

8.若 $f(x)=x^2+5x+6$ 於座標平面上之圖形頂點為 P,與 X 軸相 交於 Q 和 R,並且與 Y 軸相交於 S 點,設四邊形 PQRS 之

面積為 $\frac{n}{m}$,則 n+m=?

(A)31

(B)32

(C)33

(D)34

9.設 x 與 y 皆為整數,則有多少對的數對(x,y)滿足 $x^2-y^2=104$?

(A)7

(B)8

(C)9

(D)10

10.設 r,s∈ $\{0,1,2,3,....9\}$,若 $\frac{2660rs7}{198}$ 可以化為一個有限小數,

則 r+s=?

(A)6

(B)7

(C)8

(D)9

11.下列敘述何者正確?

(A)三角形三邊中垂線的交點稱為重心

(B)條件機率 P(B | A)= $\frac{P(B \cap A)}{P(B)}$

(C)平面上7條直線最多能將平面分成29個部分

(D)以上敘述皆錯

12.假設 x 是一個三位數,當我把這個三位數反轉以後可以得到另一個三位數 y,請問 |x-y| 之最小正整數為多少?

(A)96

(B)97

(C)98

(D)99

- 13.1abc 為四位數, de9 為三位數, a、b、c、d、e 為{0,2,4, 6,8}中任一數字,且滿足 labc-de9=537,數字不可重複使 用,則 a-b+c-d+e=?
 - (A)5
 - (B)6
 - (C)7
 - (D)8
- 14. 若 x^4 $-3x^2 + x + 5 = 0$ 之 4 個根分別為 $r \cdot s \cdot t \cdot w$,假設以 $r+2 \cdot s+2 \cdot t+2$ 以及 w+2 為 4 個根之方程式為 x^4+mx^3 $+nx^2+px+q=0$, p = m+n+p+q=?
 - (A) 3
 - (B) -1
 - (C) 1
 - (D)3
- 15.老王買賣股票喜歡跑短線,假設他每星期結算後都發現會 損失該星期之期初資金的 1%,而第 n 期結束後資金總損失 已超過原始資金的一半,則n最小為多少?[log2=0.3010, log3=0.4771, log1.1=0.0414]
 - (A)67
 - (B)68
 - (C)69
 - (D)70

$$16. \ \frac{d}{dx} \chi^{x} =$$

- (A) xx^{x-1}
- (B) $x^{x}[1 + \ln x]$

(C)
$$x^x \left[\frac{1}{x} + \ln x \right]$$

(D)
$$x^x \left(\frac{1}{x} + 1\right)$$

- 17. 若 $F(x) = \int_{0}^{x^2} \frac{dt}{t^4 + 9}$,則 F'(-1) =
 - $(A) \frac{1}{10}$
 - $(B)\frac{1}{5}$
 - $(C) \frac{1}{5}$
 - $(D)\frac{1}{10}$
- 18.若 $\{a_n\}$ 是一實數列,下列敘述何者不正確?
 - (A) 若 $\{a_n\}$ 收斂,則 $\{a_n\}$ 是一柯西數列(Cauchy sequence)
 - (B) 若 $\{a_n\}$ 收斂,但 $\{a_n\}$ 不一定有界
- (C) 若 $\sum_{n=0}^{\infty} a_n$ 收斂,則 $\lim_{n\to\infty} a_n = 0$
- (D) 若 $\{a_n\}$ 為遞增且是有界數列,則 $\lim_{n\to\infty} a_n$ 存在
- 19. $\frac{d^2y}{dx^2} + 4y = 0$ 之解為
 - $(A) y = c_1 \cos 2x + c_2 \sin 2x$
 - (B) $y = c_1 e^{2x} + c_2 e^{-2x}$
 - (C) $y = c_1 \cos 4x + c_2 \sin 4x$
 - (D) $y = c_1 e^{4x} + c_2 e^{-4x}$

(A)
$$\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = -1$$

(B)
$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} \neq \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

(C)
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 2$$

(D) f 在 x=1 不連續

- 21.若 α , β 均為複數 ,且 $|\alpha|=1$, $\alpha \neq \beta$ 則 $\left|\frac{\alpha-\beta}{1-\overline{\beta}}\right|=$
 - (A)3
 - (B)2
 - (C)4
 - (D)1
- 22.若z=x+iy,則不等式 $|z-1|+|z+1| \le 4$ 所表示之區域為
 - (A)一圓內部
 - (B)一橢圓內部
 - (C)一圓外部
 - (D)一雙曲線內部

$$23.設 M = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} , 則 M 之特徵值為$$

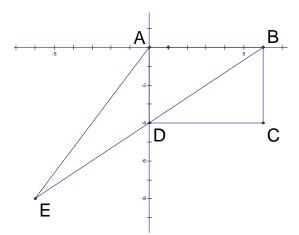
- (A)2 或 3
- (B)1 或 2
- (C)2 或 4
- (D)1 或 3
- 24.設 $Z = \{0,\pm 1,\pm 2,...\} =$ 所有整數之集合,下列何者不正確 (A)(Z,+)形成加法群

 - (B) Z 是 R 中之閉集合
 - (C)任何實數均是 Z 之內點
 - (D) brZ=Z, brZ表示Z之邊界點所形成之集合
- 25.若隨機變量 X 是二項分佈 B(n,p),下列何者不正確?
 - (A) E(X) = np
 - $(B) E(X) = npq + n^2 p^2$

(C)
$$P(X = x) = \binom{n}{x} p^x q^{n-x}$$

(D)
$$\sigma^2 = npq + 1$$

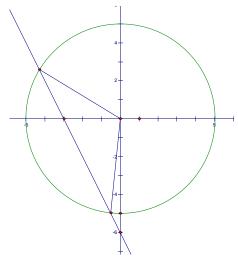
- 26.設 $y = -x^2 + 4x + 5(-4 \le x \le 1)$,則下列敘述何者正確?
 - (A)x=2時, y有最大值9
 - (B)x=1時, y有最小值8
 - (C)x = -4 時, y 有最小值-27
 - (D) x = -4 時,y 有最大值-27
- 27.195x-100y=5,100<x<200之整數解有幾組?
 - (A)3
 - (B)4
 - (C)5
 - (D)6
- 28.a,b ∈ N且a < b,若(a,b)+[a,b]=15,則序對(a,b)共有幾 組?
 - (A)4
 - (B)5
 - (C)6
 - (D)7


- 29.設a,b均為不等於零的實數,則下列各敘述何者不真?
 - (A)若|a|=a,|b|=b,則恆有a+b=|a|+|b|
 - (B)若|a| = a, |b| = -b且|a| < |b|,則a + b = |b| |a|
 - (C)若|a| = -a, |b| = -b , 則恆有a + b = -(|a| + |b|)
 - (D)若|a| = -a, |b| = b且|b| < |a|,則a + b = |b| |a|
- 30.若有一循環小數 $0.\overline{3}$,則此循環小數在小數點以下第幾位開始與 $\frac{1}{3}$ 之差小於 $\frac{1}{10^4}$?
 - (A)4
 - (B)5
 - (C)6
 - (D)7
- 31.在下面哪一範圍中,方程式 $x^4 x^3 32x^2 + 31x + 31 = 0$ 有一個根?
 - (A) 0 < x < 1
 - (B) 1 < x < 2
 - (C) 2 < x < 3
 - (D) 3 < x < 4
- 32.二多項式 f(x) , g(x) , 若 f(x)÷(2x-1)之餘式為 3 , g(x)÷(4x-2)之餘式為 1,則 $[f^2(x)+3g(x)\times f(x)]$ ÷ $(x-\frac{1}{2})$ 之餘式為 ?
 - (A)18
 - (B)9
 - (C) $\frac{9}{2}$
 - (D) $\frac{9}{4}$
- 33. ||x-1|-3| < 2 之解為
 - (A) x > 2 or x < 0
 - (B) -4 < x < 6
 - (C) -4 < x < 0
 - (D) $-4 < x < 0 \cup 2 < x < 6$
- $34. \sin 23^{\circ} \cos 112^{\circ} \sin 292^{\circ} \sin 67^{\circ} =$
 - $(A)\frac{\sqrt{2}}{2}$
 - (B)1
 - (C) -1
 - $(D) \frac{\sqrt{2}}{2}$
- 35.在 $\triangle ABC$ 中,若a+c-2b=0且3a+4b-5c=0,則 $\triangle ABC$ 之外接圓與內切圓之面積比為
 - (A)25:4
 - (B)5:2
 - (C)25:1
 - (D)25:16
- 36. (a) u(3,4), v(1,-3) (b) u(2,-3), v(6,-9) (c) u(4,3,-2), v(2,-6,7) (d) u(-4,6,-2), v(2,-3,1) :請問上列各組中u,v 為線性相依的共有幾組?
 - (A)0
 - (B) 1
 - (C) 2
 - (D) 3

$$37. \sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+5)} =$$

- (A) $\frac{23}{90}$
- (B) $\frac{23}{60}$
- (C) $\frac{2}{9}$
- (D) $\frac{2}{15}$
- 38. 一電腦擇友活動中有五位男孩 A,B,C,D,E 及四位女孩a,b,c,d 参加,經過個性和興趣分析後,電腦跑出來的結果是:a和 C、D 不適合,b和 A、E 不適合,c和 B、C 不適合,d和 E 不適合,請問共有多少種配對法?
 - (A)35
 - (B)30
 - (C)25
 - (D)20
- 39. 集合 $M = \{2,3,5,7\}$ 的子集共有多少個?
 - (A)20
 - (B)18
 - (C)16
 - (D)15
- 40. 下列何者為真?
 - (A)若 $f:A \rightarrow B \setminus g:A \rightarrow B$ 均為一對一函數,則f=g
 - (B) $A \neq m$ 個元素、 $B \neq n$ 個元素、 $f: A \rightarrow B$ 為一對一函數,則 m = n
 - (C) $f: R \to R \times g: R \to R$ 均為一對一函數,則 $f+g: R \to R$ 亦為一對一函數
 - (D) $A \neq m$ 個元素、 $B \neq n$ 個元素、 $f: A \rightarrow B$ 為一對一函數,則 $m \leq n$

台南縣九十三學年度公立國民中學教師聯合甄選答案<數學>									
1	2	3	4	5	6	7	8	9	10
D	В	В	C	С	D	C	C	В	A
11	12	13	14	15	16	17	18	19	20
C	D	D	C	C	В	C	В	A	В
21	22	23	24	25	26	27	28	29	30
D	В	A	C	D	C	C	A	В	A
31	32	33	34	35	36	37	38	39	40
В	A	D	A	A	C	A	C	C	D


- 1. [高一]正弦定理: $\frac{a}{\sin A} = 2R \Rightarrow \frac{12}{\sin 30^{\circ}} = 24 \Rightarrow a+b=6$
- 2. [國三]相似形:這種題目我都座標化,輕鬆又自在。所以 $\overline{AE}=10$

- 3. [國三]兩同之後一不同: $\frac{1}{6} \times \frac{5}{6} = \frac{5}{36}$, 兩異之後再一顆跟其中一颗相同: $\frac{5}{6} \times \frac{2}{6} = \frac{10}{36}$, 相加即得 $\frac{15}{36} = \frac{5}{12}$
- 4. [很不好算的國三題]又不能當成梯形來算,運算量太大, 所以我就放棄了。算完這題可能要十分鐘。
- 5. [高一]三角函數應用題:一樣座標化。但一個單位表示 50 公里。將燈塔視為原點,與圓心。颱風路徑的直線方程為 $\sqrt{3}x+v=-6$,圓的方程為 $x^2+v^2=5^2$

$$(-6 - \sqrt{3}x)^2 + x^2 = 25 \Rightarrow \begin{cases} \alpha + \beta = -3\sqrt{3} \\ \alpha\beta = \frac{11}{4} \end{cases} \Rightarrow |\alpha - \beta| = 4$$

路徑長會是兩倍,也就是八個單位,而兩小時一個單位, 所以共 16 個小時。

- 6. [微積分應用 求極大極小] $V(a) = (15-2a)(8-2a)a = 4a^3 46a^2 + 120a$ 令 $V'(a) = 12a^2 92a + 120 = 0$ $(3a-5)(a-6) = 0, a = \frac{5}{3}, 6(不合)$
- 7. [高二]空間座標 ,可令圓心為(3+t,-1-2t,-1-2t) $\overline{OA} = \overline{OB} \Rightarrow 9t^2 = (2+t)^2 + (2-2t)^2 + (-2-2t)^2$ $4t + 4 8t + 4 + 8t + 4 = 0 \Rightarrow t = -3 \Rightarrow 圓心(0,5,5)$ 半徑=|3t|=9
 球面方程式: $x^2 + (y-5)^2 + (z-5)^2 = 81$ 展開 $x^2 + y^2 + z^2 10y 10z 31 = 0$ a + b + c + d = -51
- 8. $[\boxtimes \exists] f(x) = x^2 + 5x + 6 = (x + \frac{5}{2})^2 \frac{1}{4}$ $P(-\frac{5}{2}, -\frac{1}{4})$, Q(-2,0), R(-3,0), S(0,6)

四邊形面積 =
$$\frac{1}{2} \times 1 \times \frac{25}{4} = \frac{25}{8} \Rightarrow m+n=33$$

- 9. [國二]x²-y²=104⇒(x+y)(x-y)=104
 而(x+y)與(x-y)必同奇同偶,本題為同偶。
 而104=4x26=2x52 共2種。xy 對調與考慮正負,共8種。
- 10. [國一]可化為有限小數,表分母只剩2或5的倍數。 換句話說要上下同約掉99。 99的倍數可以使用26+60+rs+7為99的倍數。 故rs=06,r+s=6
- 11. [雜燴](A)應為外心(B)條件機率 $P(B|A) = \frac{P(B \cap A)}{P(A)}$
- 12. [國一]x-y 必為 99 的倍數。
- 13. [益智題]硬湊出 1026-489=537, 所以答案為 8
- 14. [高一]每個根都加 2, 等於圖形往右移動 2。故用(x-2)去 代替原本的 x 展開即可。

$$(x-2)^4 - 3(x-2)^2 + (x-2) + 5 = 0$$

$$\Rightarrow x^4 - 8x^3 + 21x^2 - 19x + 7 = 0 \Rightarrow m+n+p+q=1$$

- 15. $[] \log 0.99 = -0.0044$, -0.0044n < -0.3010 $n > \frac{3010}{44} \approx 68.5 \Rightarrow n = 69$
- 16. [微積分-技巧題]訣竅 $x^x = e^{x \ln x}$ $\frac{d}{dx}e^{x \ln x} = e^{x \ln x}(\ln x + 1) = x^x(\ln x + 1)$
- 17. [微積分一微積分第二定理應用] $F'(x) = \frac{1}{x^8 + 9} \times 2x$ $F'(-1) = \frac{1}{1+9} \times (-2) = -\frac{1}{5}$
- 18. [微積分-數列極限與收斂]收斂必然有界,不然是要收斂 到哪裡去?
- 19. [微積分-常微分方程]可以用代的,也可以用背公式的。 我喜歡用代的,這樣比較正確。
- 20. [微積分-極限]左極限為2x,右極限為1,不相等。
- 21. [高二]概念題,答案是1。
- 22. [高二]兩長度的和等於某定值,是橢圓,小於的話就是內 部。所以是一橢圓內部。
- 23. [線代]($\lambda 1$)($\lambda 4$) + 2 = 0 $\Rightarrow \lambda = 2,3$
- 24. [雜燴](C)錯在整數不可能包含所有實數
- 25. [機統]我是用背的, $\sigma^2 = np(1-p)$
- 26. [國三]開口朝下,有最大值發生在 x=-2,相對最小發生在 x=-4
- 27. [高一] $39x 20y = 1 \Rightarrow \begin{cases} x = -1 + 20t \\ y = -2 + 39t \end{cases}$, 對 x 而言,每二十 個整數會有一組解,100 < x < 200 會有 5 組解。
- 28. [國一或益智題]湊吧。(1,14)(2,7)(3,12)(5,10)共四組
- 29. [國一]通常我都丟數字去檢查,(B)是錯的。
- 30. [國一]第四位已經到10⁻⁴, 所以誤差會小於10⁻⁴。
- 31. [國二]可分解為 $(x^2 x 1)(x^2 31) = 0$ $x = \pm \sqrt{31}, \frac{1 \pm \sqrt{5}}{2} \Rightarrow 1 < \frac{1 + \sqrt{5}}{2} < 2$
- 32. [高一]我用芭樂招,讓 f(x) = 3, g(x) = 1,所求=18
- 33. $[\boxtimes] -2 < |x-1| -3 < 2, 1 < |x-1| < 5$ 1 < x - 1 < 5, 2 < x < 6-5 < x - 1 < -1, -4 < x < 0
- 34. [高一]原式會成為 $\cos(22+23)^\circ = \frac{\sqrt{2}}{2}$

35. [國三]解得
$$a:b:c=3:4:5 \Rightarrow R=\frac{5}{2}$$
, $r=1$ 面積比= $\frac{25}{4}:1=25:4$

- 36. [線代]線性相依就兩個成比例,有(b)(d)
- 37. [高一一分項對消法]扣一扣會剩下

$$\frac{1}{6}(\frac{1}{1} + \frac{1}{3} + \frac{1}{5}) = \frac{23}{90}$$

38. [高二]這又是一題很痛苦的窮舉法,以下列出我的結果。

$$A = \begin{bmatrix} B - C \\ E \\ D \\ C \end{bmatrix}$$
 是是, $B = \begin{bmatrix} C \\ D - A \\ E \\ D \\ D - A \end{bmatrix}$ 是是, $B = \begin{bmatrix} A - D \\ D - A \\ E \\ D \\ D - E \end{bmatrix}$ 是是, $A = \begin{bmatrix} A - D \\ D - A \\ E \\ D \end{bmatrix}$ 是是, $A = \begin{bmatrix} A \\ D \\ D \\ A \end{bmatrix}$ 是是, $A = \begin{bmatrix} A \\ D \\ D \\ A \end{bmatrix}$ 是是, $A = \begin{bmatrix} A \\ D \\ D \\ A \end{bmatrix}$ 是是, $A = \begin{bmatrix} A \\ D \\ D \\ A \end{bmatrix}$ 是是, $A = \begin{bmatrix} A \\ D \\ D \\ A \end{bmatrix}$ 是是, $A = \begin{bmatrix} A \\ D \\ D \end{bmatrix}$ —— $A = \begin{bmatrix} A \\ D \\ D \end{bmatrix}$ —— $A = \begin{bmatrix} A$

- 39. [高二]取或不取而已, 2⁴ = 16
- 40. [高一](A)錯,如[0,4]y=x,x+y=4

(B)錯,可能 n>m

(C)錯,如(A)中的例子會變成多對一